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For a real or complex Hilbert space H, a general form of an even, orthogonally 
additive functional on B(H) is given. 

I N T R O D U C T I O N  

A celebrated theorem of Gleason (1975) states that a Gleason  measure ,  

i.e., a countably additive measure on the lattice of projections from B(H), 
with H separable and of dimension >2,  extends uniquely to a positive linear 
functional on B(H). In this paper, we try to answer the following question: 
Are there any extensions of such a measure which are not linear, but preserve 
its orthogonal additivity? What do they look like? Of course, to be able to 
formulate the problem properly we need an orthogonality relation not only for 
projections, but also for operators. One natural definition suggests i tself- - two 
operators are orthogonal if the closures of their ranges are orthogonal. 

The investigation of functions defined on various linear spaces and 
additive on orthogonal elements (with a suitably chosen orthogonality rela- 
tion) has been a subject of many papers [see, e.g., references in Rosifiski 
and Woyczyfiski (1977)]. It should be noted that B(H) (or, rather, its self- 
adjoint part) with the proposed notion of  orthogonality is not, in general, an 
orthogonality vector space in the sense of Gudder and Strawther (1975), so 
that our results are not implied by theirs. 

It is clear that an orthogonally additive functional on an operator algebra 
can be decomposed into its even and odd parts. In Theorem 2.3, which is 
the main result of this paper, we give a general form of an even,  orthogonally 
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additive functional on B(H). Using this result, we easily obtain the uniqueness 
of an even, orthogonally additive extension of a Gleason measure (see Corol- 
lary 2.7). As a byproduct, we obtain some (hopefully) new results on orthogo- 
nally additive functions on a Hilbert space, in both real and complex cases. 

1. ORTHO GO NALLY ADDITIVE FUNCTIONS ON A HILBERT 
SPACE 

In the sequel, H denotes a real or complex Hilbert space. We shall 
always assume that dim H - 2. 

Definition 1.1. A function f :  H --~ C is called orthogonally additive (o,a. 
for short) if 

(x, y) = 0 implies f (x  + y) = f(x)  + f ( y )  

for any vectors x, y ~ H. 

Definition 1.2. A function f :  H --~ C is called hemicontinuous if 

f ( h x ) ~ f ( x )  for ~ , ~  1, X e R 

for any vector x e H. 

The following fundamental result is well known. 

Theorem 1.3. If  an o.a. funct ionfis  hemicontinuous and real valued, then 

f (x)  = l(x) + allxll 2, x ~ H (1) 

for some uniquely determined linear functional l on H and number a e R. 

This is a special case of  Lemma 2.1 (and also Corollaries 2.3 and 2.4) 
in Gudder and Strawther (1975). Lemma 1 in Rosifiski and Woyczyfiski 
(1977) for the Banach space E = R and the finite-dimensional Hilbert space 
L2(T, ~, p~) also reduces to our Theorem 1.3. 

We shall prove the following result. 

Theorem 1.4. Let H be a Hilbert space over F of dimension dim H -> 2. 
(a) If  F = R, then each real o.a. function on H, satisfying the condition 

sup[ If(x)[; Ilxll <- 1} < ~ (2) 

is of  the form 

f (x)  = (x, Yo) + ~llxll 2, 

for uniquely determined Y0 ~ H and a ~ R. 

x E H  
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(b) If 1: = C, then each complex o.a. function on H satisfying (2) is of  
the form 

f ( x )  = (x, YI> + (Yz, x> + o~llxll 2, x ~ H 

for uniquely determined y~, Y2 E H,  ot ~ C.  

We begin with a few simple lemmas. 

Lemma 1.5. If an o.a. function f :  H --~ C satisfies (2), t h e n f i s  continuous 
(with respect to the norm) at 0 e H. 

Proof  If x, y ~ H, [[xl[ = ]ly[[ and x • y, then 

f ( x )  + f ( - x )  = f ( ( x  - y)/2) + f ( ( x  + y)/2) 

+ f ( ( - x  + y)/2) + f ( ( - x  - y)/2) 

= f ( y )  + f ( - y )  

Consequently,  

f(Zx) = f(x + y) + f(x - y )  = 3 / ( x )  + f ( - x )  

and, by induction, 

f (2kx) + f ( - -2kx)  ---- 22k(/(X) + f ( - -X))  

f(2kX) -- f(--2kX) = 2k(f(x) -- f ( - -X))  (3) 

for each k ~ N. 
Fix now ~ > 0. If, for any k ~ N, there exists x E H such that [[x[[ < 

2 -k and If(x)  l > e, then 

If(x) + / ( - x ) l  > e (4) 

or  

If(x) - f ( - x ) [  > ~ (5)  

Inequality (4) implies, by (3), 

max(If(2kx)[,  ] f ( -2kx) l )  _> 1/2[f(2kx) + f ( - 2 k x ) ]  > 2zk-te 

whereas (5) implies 

max([f(2~x) l, If(--2kx)[) >-- l /2ll f(Zkx) -- f(--Z~x) l > 2k-~e 

Since k e N was arbitrary, both cases lead to a violation of  (2). �9 

Lemma 1.6, If an o.a. function f :  H --~ C is continuous at 0 E H, then 
it is hemicontinuous.  
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The proof does not differ from that of  Corollary 2.4 in Gudder and 
Strawther (1975). 

When H is a complex Hilbert space, by its real Hilbert subspace we 
mean a closed R-linear subspace K C H such that, for any x, y E K, (x, y) 
E R. Therefore, a real Hilbert subspace K with the induced scalar product 
is a real Hilbert space. 

Lemma 1.7. Let H be a complex Hilbert space. If  f :  H ~ C is continuous 
and R-linear on each real Hilbert subspace of H, then 

f ( x )  = (x, Yl) + ~Yz, x), x E H 

for some uniquely determined vectors y~, Y2 ~ H. 

Proof  Note that any orthogonal system in H generates a real Hilbert 
subspace. Put, for x ~ H, 

g(x) = [f(x) - if(ix)]~2 

h(x) = [f(x) - if(ix)]~2 

Both g and h are continuous and R-linear on real Hilbert subspaces of  H, 
and both are C-homogeneous on H. In fact, it is clear that g(~lX) = ~lg(x) for 
real or imaginary ",/and x ~ H. Take now any ~/ E C and x ~ H and let el, 
e 2 E H b e  such that x = el + e2, el / e2, and []el[] = Ile2l[. Then 

g('yx) = g ( , ~ e l  + i ~ e 2 )  + g(i~'yel + ,~"/ez) 

= ~"/g(el)  + i~ lg(e2)  + i ~ l g ( e l )  + ,~"yg(ez) 

= ~ g ( x )  

and a similar proof applies to h. Fix now a complete orthonormal system 
(ek) in H. Take any x ~ H. The properties of  g on the real Hilbert subspace 
generated by vectors (x, ek)ek imply the summability of  ((x, ek)g(e~)). Thus, 
(g(ek)) is square-summable and 

g(x) = ~ g((x, ek)e~) = ~ (x, e~)g(ek) = (x, ~ g(e~)e~) for x ~ H 

Hence g(x) = (x, Yl) and similarly h(x) = (x, Y2) for some, obviously unique, 
vectors Yl, Y2 ~ H. This yields the desired formula forf(x)  = g(x) + h(x). �9 

Proof  o f  Theorem 1.4. Part (a) results directly from Lemmas 1.5 and 
1.6 and Theorem 1.3, since (2) implies continuity of  the functional f in 
representation (1). In order to prove (b), let us represent the function f as the 
sum of the even and odd parts f = f -  + f§ wheref-+(x) = [f(x) _ f ( - x ) ] /  
2. Fix now e0 c H, Ileoll = 1. Let e be an arbitrary vector in H with Ilell = 
1. Then there exist e '  _1_ e, (e', e0) ~ R, Ile'll = 1, and real Hilbert subspaces 
KI and K2, such that 
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e, e' ~ Kl, e', e0 e K2, dim Ki >- 2, 

Thus, in view of (a) and the evenness o f f  +, we have 

~f+("le) = (xdy 2, 7 e R 

for some constant c~ e R depending on e. Since oLe 

~f+(x) = ~eollxll 2 

Reasoning similarly for the imaginary part, we finally get 

f+(x) = allx[I 2, x ~ H 

for a uniquely determined ot e C. 
Also, by (a) and Lemma 1.7 we have 

f - ( x )  = (x, Yl) + (Y2, x), x e H 

for an odd funct ionf- (x)  satisfying (2). �9 

i = 1 , 2  

= OL e,  : OLeo , w e  obtain 

2. E V E N  O R T H O G O N A L L Y  A D D I T I V E  F U N C T I O N S  ON B(H) 

Definition 2.1. We say that operators A, B e B(H) are (mutually) orthogo- 
nal (A I B) if B*A = O. 

Definition 2.2. A function 6: B(H) ---> C is said to be orthogonally 
additive (o.a. for short) if: 

(i) For each weakly summable family (Ai) of operators from B(H) 
satisfying Ai 3_ Aj for i =~ j, the family ({(Ai)) is summable and 

~ ( E  Ai) = E ~(Ai) 

(ii) K := sup{ I~(A)I I [IA[[ <-- 1} < ~. 

Theorem 2.3. If an o.a. function ~ on B(H) is even, i.e., if ~(A) = ~(-A)  
for A e B(H), then there exists a uniquely determined trace-class operator 
M e B(H) such that 

~(A) = tr(MA*A), A E B(H) (6) 

For any vectors x, y E H we denote by ( . ,  x)y the operator 

H 3 z '-" (z, x)y (7) 

This operator depends linearly on y and antilinearly on x, and (( . ,  x)y)* = 
( . ,  y)x. The operator ( . ,  e)e is a one-dimensional projection for each e e 
H, Ilell = 1, and, for xl, x2 :~ 0, 
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( ' ,  Xl)y 1 I ~' ,  x2)y 2 if and only if y~ L Y2 (8) 

The essential part of  the proof  of  Theorem 2.3 consists in proving 
formula  (6) for operators A of  the form (7). We shall break the p roof  into a 
series of  lemmas.  

Lemma 2.4. I f  the space H is complex  (resp. real), then 

~((., x)y) = c~(x)llyll 2, x, y ~ H 

for some (uniquely determined) complex  (resp. real) function a on H. 

Proof For a fixed x ~ H, the function 

f(y) = ~({ ' ,  x)y), y ~ H 

is obviously even and, by (8), orthogonally additive. The use of  Theorem 
1.4 ends the proof. �9 

I_emma 2.5. Let ~x(-) be the function f rom L e m m a  2.4. For any el, e2 
E H, el _1_ e2, the equalities o~(el) = o~(e2) = oL(el + e2) = 0 imply eff131el 
+ 132e2) = 0 for any 13b 132 e R. 

Proof For 0 ~ 13 e R, put ~ = 1/(1 + [32) 1/2. Then, by the definition 
of  a ( ' ) ,  

o~([3e 1 -- 13-1e2 ) = o~([3e 1 -- 13-1e2 ) + o~(e I + e2) 

= ~( ( ' ,  13el -- 13-1e2)([3~el + ge2)) 

+ ~(( . ,  ej + e2)(gel -- 138e2)) 

= ~( ( ' ,  13el -- 1301e2)(13~el + ~e2) 

+ ( ( ' ,  el + e2)(gel -- [38e2)) 

= ~ (~ - l ( . ,  el)el -- ([3~)-1( ", ez)e2) 

= 8 -2a(e l )  - ( 1 3 ~ ) - 2 0 ~ ( e 2 )  

= 0  

Similarly, using the equality effet - e2) = O, proved above,  we show that 
ot (13e  1 q- 1 3 - I e 2 )  = 0. Now off-/x) = ~/2o~(x) for 3' ~ R, x E H, so that we 
can replace the coefficients 13, [3 - t  with any pair  [3,132 of  real coefficients,  
which ends the proof. �9 

Proposition 2.6. I f  ~ is an even, orthogonally additive function on 
B(H),  then 

~(P) = tr(Me),  P e ~ ' (H)  

for a uniquely determined trace-class operator  M e B(H).  
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Proof If dim H >- 3, the proposition follows immediately from a well- 
known generalization of  the Gleason theorem for a signed Gleason measure, 
obtained originally by Serstnev (n.d.) [see also Bunce and Wright (1992)]. 

Let  H = R 2. Choose an orthonormal basis {el, ez} of  H. It is easy to 
find a self-adjoint M ~ B(H)  such that, for ~l(A) = ~(A) - tr(MA*A), 

~t( ( ' ,  et)el) = ~l( ( ' ,  e2)e2) = ~l( ( ' ,  el + e2)(el + e2)) = 0 

By Lemmas  2.4 and 2.5, ~ t ( ( ' ,  x)y) = c~(x)llyll z with a = 0, so that ~l = 0. 
Let  now H = C 2. As before, choose an orthonormal basis {et, e2} of  

H and put ~t(A) = ~(A) - tr(MA*A) for A E B(H).  It is easy to find M E 
B(H)  such that 

~1((',  el)el) = ~1((',  ez)e2) 

= ~l({' ,  el + e2)(el + e2)) 

= ~1((', el + ie2)(ej + ie2)) = 0 

By Lem ma  2.4, ~ t ( ( ' ,  x)y) = oL(x)lly[I 2, and 

o~(ei)  = (x(e2)  = o t (e  1 + e2)  = oL(e I + i e2)  = 0 

Moreover,  o~(~/x) = I~/I 2a(x) for "y E C and x E C 2. A repeated use of  this 
formula together with Lemma 2.5 yields in turn a ( - i e l  + ie2) = O, ~x(~e I 
+ ~/e2) = 0 for ~/ ~ C, e~(el + "/e2) = 0 for ",/ E C, I'yI = 1, a(el  + ~tez) 
= 0 for "y E C, and, finally, e~(x) = 0 for any x E C 2. Thus, ~l = 0. The 
uniqueness of  M is obvious in both the real and the complex case. �9 

Proof of  Theorem 2.3. Assume first that ~ is real (with H real or complex).  
Let  (ek) be an orthonormal basis of  H. It is easy to see that the family ((- ,  
A*ek)A*ek) is weak operator summable with the sum equal to A*A. Since the 
partial sums are uniformly bounded in norm (by ]IA 112), they converge to A*A 
o--weakly as well. Using weak operator continuity of  6, we get, by Lemma 
2.4 and Proposition 2.6, 

~(A) = ~(~  ( ' ,  ek)Ae~) 
k 

= ~ f-;((', A*ek)ek) 
k 

= 

k 

= ~ IIA*edlZo+CA*e#lla*edl) 
k 

= ~ ~((', A*e#llA*e~ll)A*ek) 
k 
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= ~ IIA*e~l[2~(( �9 , A*edllA*ekll)A*eJllA*ekll) 
k 

= ~ IIA*ekll 2 tr(M(-, a*ek/llA*ekll)Z*eJllA*edl) 
k 

= ~] tr(M(',  A*ek)A*ek) 
k 

= tr(MA*A) 

(the terms with A*e~ = 0 are all set to zero). 
If ~ is complex, we decompose it into its real and imaginary parts. [] 

Corollary 2.7. Let tx be a countably orthogonally additive positive- 
valued function on the logic of all orthogonal projections in H (i.e., a Gleason 
measure on H), where H is a separable Hilbert space of dimension ->3. 
Then there exists a unique extension of tx to an even, orthogonally additive 
functional on B(H) given by 

f(A) = tr(MA *A) 

for a uniquely determined positive trace-class operator M. 
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